

Properties of Triangles and Four-Sided Figures

Worksheet 1 Classifying Triangles

The figures are not drawn to scale.

Write true or false for each statement.

Triangle ABC is an equilateral triangle.

- **1.** Any two sides are equal.
- **2.** All the angles measure 60°.
- **3.** A right triangle can also be an equilateral triangle.
- **4.** An equilateral triangle can also be an isosceles triangle.
- **5.** An isosceles triangle can never be an equilateral triangle.

Put a check in the box if the triangle is an equilateral triangle.

6.

7.

Write true or false for each statement.

Triangle PQR is an isosceles triangle.

- **9.** Two sides are equal.
- 10. Any two angles are equal.
- 11. A triangle with three equal sides can also be an isosceles triangle.
- **12.** A right triangle can also be an isosceles triangle.

Put a check in the box if the triangle is an isosceles triangle.

13.

14.

15.

Write true or false for each statement.

Triangle WXY is a scalene triangle.

- **16.** All three sides are of different lengths.
- **17.** All three angle measures are different.

Put a check in the box if the triangle is a scalene triangle.

18.

19.

20.

Write true or false for each statement.

Triangle ABC is a right triangle.

21. One angle is 90°.

22. The sum of any two angle measures is 90°.

23. The sum of all the angle measures is 90°.

Put a check in the box if the triangle is a right triangle.

24.

25.

Write true or false for each statement.

Triangle *STU* is an obtuse triangle.

- **27.** All the angles measure less than 90°.
- **28.** An obtuse triangle can also be an isosceles or a scalene triangle. ______

Put a check in the box if the triangle is an obtuse triangle.

29.

30.

31.

Write true or false for each statement.

Triangle *PQR* is an acute triangle.

- **32.** All the angles measure greater than 90°.
- **33.** An acute triangle can also be an equilateral, isosceles, or scalene triangle.

Put a check in the box if the triangle is an acute triangle.

34.

35.

Worksheet 2 Measures of Angles of a Triangle

The figures are not drawn to scale.

Write true or false for each statement.

Triangle XYZ has three unequal sides.

- **1.** $\angle X$, $\angle Y$, and $\angle Z$ are the three angles of the triangle.
- **2.** The sum of the measures of $\angle X$, $\angle Y$, and $\angle Z$ is 180°.
- 3. All the angles must measure less than 90°.
- 4. At most one angle measure is equal to or greater than 90°.

Complete. Find the unknown angle measures.

5.

$$m \angle Y = \underline{\hspace{1cm}}$$

6.

7.

8. \overline{PR} is a line segment. Find the measure of $\angle PQS$.

9. \overline{AC} is a line segment. Find the measure of $\angle BDC$.

10. *ABC* is a right triangle.

a. Find the measure of $\angle C$.

b. \overline{AD} is perpendicular to \overline{BC} at D. Find the measure of $\angle DAC$.

159

Complete.

11.

m/_____ + m/____ + m/____ = 180°

Write true or false for each statement.

12.
$$m \angle ABC + m \angle BAC + m \angle BCA = 90^{\circ}$$

13.
$$m\angle ADC + m\angle DAC + m\angle BAC + m\angle ABC = 180^{\circ}$$

14.
$$m\angle ADC + m\angle DAC + m\angle ACD = 180^{\circ}$$

Use the figure below to complete Exercises 15 to 18.

Write 3 sets of angles that total 180°.

Write a set of 4 angles that total 180°.

m∠

m∠

m∠

m∠

Triangle ABC is not drawn to scale.

Write true or false for each statement.

19. If
$$m \angle B + m \angle C = 90^{\circ}$$
, then $m \angle A$ is 90° .

20. If
$$m \angle A = 90^{\circ}$$
, then $m \angle B$ is less than 90° .

Write 3 different possible measures for $\angle B$ and $\angle C$.

21. If
$$m \angle A = 80^{\circ}$$
, then $m \angle B = \underline{\qquad} m \angle C = \underline{\qquad}$

22. If
$$m \angle A = 80^{\circ}$$
, then $m \angle B = \underline{\qquad} m \angle C = \underline{\qquad}$

23. If
$$m \angle A = 80^{\circ}$$
, then $m \angle B = \underline{\qquad} m \angle C = \underline{\qquad}$

Worksheet 3 Right, Isosceles, and Equilateral Triangles

Find the unknown angle measure in each right triangle.

Example

This is a right triangle. $m \angle x = \underline{34}$ \circ

1.

2.

Find the unknown angle measure in each isosceles triangle.

3.

Find the unknown angle measure(s) in each isosceles triangle.

$$m \angle MLN = \underline{55}$$

5.

$$m \angle FEG = \underline{\hspace{1cm}}^{\circ}$$

$$m \angle \mathit{EFG} = \underline{\hspace{1cm}}^{\circ}$$

6. \overrightarrow{PS} is a ray.

7. \overrightarrow{AC} is a ray.

- **8.** ABC is an isosceles triangle with sides AB = AC.
 - a. $m \angle A = 70^{\circ}$ Find the measure of $\angle C$.
 - **b.** Point D is on segment BC. \overline{AD} is perpendicular to \overline{BC} . Find the measure of $\angle DAC$.
- **9.** ABC is an isosceles triangle with sides AB = AC.
 - **a.** $m\angle A = 105^{\circ}$ Find the measure of $\angle C$.
 - **b.** Point *D* is on segment *BC*. $m \angle DAC = 25^{\circ}$ Find the measure of $\angle ADB$.

Find the unknown angle measure(s).

10.

11.

12.

13.

14.

15.

16.

Worksheet 4 Triangle Inequalities

The figure is not drawn to scale.

Example -

Complete.

$$WX = \underline{\qquad \qquad} 6$$
 cm

$$WY = \underline{\qquad \qquad}$$
 cm

$$XY + WY = \underline{\qquad} 10 \qquad \text{cm} \qquad WX + WY = \underline{\qquad} 2 \text{cm}$$

$$XY = \underline{\qquad 4} \quad \text{cm}$$

$$WX + XY = _{---} 10$$
 cm

$$WX + WY = _{---}$$
 cm

Look at the triangle WXY. Fill in the blanks with Yes or No.

Is
$$WX + XY > WY$$
? Yes

Is
$$XY + WY > WX$$
? Yes

Is
$$WX + WY > XY$$
? Yes

The figure is not drawn to scale. Complete.

1.
$$PQ =$$
______ in.

2.
$$QR =$$
______ in.

3.
$$PR =$$
______ in.

4.
$$PQ + QR =$$
 ______ in.

5.
$$QR + PR =$$
_____ in.

6.
$$PQ + PR =$$
_____ in.

Look at the triangle PQR. Fill in the blanks with Yes or No.

7. Is
$$PQ + QR > PR$$
?

8. Is
$$QR + PR > PQ$$
?

9. Is
$$PQ + PR > QR$$
? _____

Name: _____

Date: _____

Show whether it is possible to form triangles with these sides.

10. 2 in., 3 in., 5 in.

11. 4 cm, 5 cm, 10 cm

12. 6 cm, 7 cm, 8 cm

Find all the possible lengths for the missing side. The lengths are in whole centimeters or whole inches.

Example

DF is greater than 4 centimeters.

What are the possible lengths of \overline{DF} ?

$$DE + EF = 4 \text{ cm} + 3 \text{ cm}$$

= 7 cm
 $DE + EF > DF$
7 cm > DF

So, *DF* is greater than 4 centimeters and less than 7 centimeters. The possible lengths of *DF* are 5 centimeters and 6 centimeters.

In triangle ABC, AB = 5 inches, BC = 6 inches, and AC is greater than 4 inches. What are the possible lengths of \overline{AC} ?

XYZ is a triangle in which XY = 11 centimeters and YZ = 15 centimeters. The length of XZ is in whole centimeters and is greater than 20 centimeters. What are the possible lengths of \overline{XZ} ?

Worksheet 5 Parallelogram, Rhombus, and Trapezoid

The figures are not drawn to scale.

Write true or false for each statement.

The figure is a parallelogram.

1. All sides are of equal length.

2. All angle measures are equal.

- ____
- **3.** Opposite sides of the parallelogram are of equal length.
- ____
- **4.** The measures of the opposite angles of the parallelogram are equal.

Put a check in the box if the figure is a parallelogram.

5.

6.

171

Find the unknown angle measure(s) in each parallelogram.

Example -

$$m \angle a = 180^{\circ} - 132^{\circ}$$

= 48°

This is a **parallelogram**.

The opposite sides are parallel.

7.

8.

9.

Write true or false for each statement.

The figure is a rhombus.

11. All the sides of a rhombus are of equal length.

12. All the angle measures of a rhombus are equal.

13. Opposite sides of a rhombus are of equal length.

14. The measures of the opposite angles of a rhombus are equal.

15. A rhombus is also a parallelogram.

Put a check in the box if the figure is a rhombus.

16.

Find the unknown angle measure(s) in each rhombus.

Example -

$$m \angle a = 180^{\circ} - 148^{\circ}$$

= 32°

A **rhombus** is

a special kind of parallelogram.

18.

19.

20.

21.

Write true or false for each statement.

The figure is a trapezoid.

equal length.

equal measure.

22. All the sides of a trapezoid are of equal length.

- **23.** All the angle measures of a trapezoid are equal.

- **25.** A trapezoid has only one pair of opposite angles of

A trapezoid has only one pair of opposite sides of

26. A trapezoid is also a parallelogram.

Put a check in the box if the figure is a trapeziod.

27.

24.

Find the unknown angle measure(s) in each trapezoid.

Example -

$$m \angle x + \underline{68^{\circ}} = 180^{\circ}$$

$$m \angle x = _____ 180^{\circ} ___ - ___ 68^{\circ}$$
 $= _____ 112^{\circ} ___$

This is a **trapezoid**.

29.

30.

31.

32.

33.

34.

35.

176 Chapter 13 Lesson 13.5