<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.1.A1 by end of grade 8</td>
<td>Scientific Processes Habits of Mind</td>
<td>Evaluate the strengths and weaknesses of data, claims, and arguments.</td>
<td>92 study claims made by bottled water companies</td>
<td>43 study water filtration device claims</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.1.A2 by end of grade 8</td>
<td>Scientific Processes Habits of Mind</td>
<td>Communicate experimental findings to others.</td>
<td>41 create water quality report</td>
<td>43 write paragraph to explain results</td>
<td>45 write summary of findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.1.A3 by end of grade 8</td>
<td>Scientific Processes Habits of Mind</td>
<td>Recognize that the results of scientific investigations are seldom exactly the same and that replication is often necessary.</td>
<td>37 what percentage comes from this source? (problem 4)</td>
<td>13 calculating error between your barometer and a commercial barometer</td>
<td>15 importance of good record keeping in order to avoid error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.1.A4 by end of grade 8</td>
<td>Scientific Processes Habits of Mind</td>
<td>Recognize that curiosity, skepticism, open-mindedness, and honesty are attributes of scientists</td>
<td>7 contributions of Joule</td>
<td>9 Joseph Black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #: Grade level</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>08.5.1.B1 by end of grade 8</td>
<td>Scientific Processes Inquiry and Problem Solving</td>
<td>Identify questions and make predictions that can be addressed by conducting investigations.</td>
<td>3</td>
<td>what is temperature</td>
<td>17</td>
<td>predicting areas with high ozone concentration based on your data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>asking questions pertaining to specific heat and heat flow</td>
<td>20</td>
<td>predicting what would happen if you place your ice/water test tube into a hot cup or a cold cup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>why is Earth’s atmosphere different from other planets</td>
<td>63</td>
<td>estimating the number of meteor collisions on Earth during the last 3.5 billion years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>why do ears pop</td>
<td>66</td>
<td>predicting the results of the crystal-growing experiment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>why does Earth have seasons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>how does rain form</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td>how do animals survive in the desert</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>what is a carbon sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>why haven’t we run out of water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>what is in your tap water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>what is acid rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>why are oceans salty</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>why doesn’t Earth get bigger and bigger</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td>what causes eclipses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>195</td>
<td>is Pluto a planet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #:</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.1.B2</td>
<td>Scientific Processes</td>
<td>Inquiry and Problem Solving</td>
<td>Design and conduct investigations incorporating the use of a control.</td>
<td></td>
<td></td>
<td>21</td>
<td>investigating how specific heat of water regulates Earth's temperature</td>
</tr>
<tr>
<td>by end of grade 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>determining whether distance from light source or axial tilt plays a more significant role in causing the seasons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>conducting investigation of efficiency of immersion heater</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>simulating the effect of acid rain on daphnia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>identifying how the earthquake model represents an earthquake</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>effect of changing mass on collected data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>conducting experiments on heat transfer</td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.1.B3 by end of grade 8</td>
<td>Scientific Processes</td>
<td>Inquiry and Problem Solving</td>
<td>Collect, organize, and interpret the data that results from experiments.</td>
<td>28</td>
<td>atmospheric pressure at various altitudes graph</td>
<td>13</td>
<td>constructing a graph from atmospheric pressure data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>observing an aurora</td>
<td>15</td>
<td>collecting Schönbein strips for detecting ozone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td>making observations and asking questions</td>
<td>18</td>
<td>collecting data of temperature and sensations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>152</td>
<td>Moh's hardness scale</td>
<td>19</td>
<td>graphing water and ice temperature readings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>204</td>
<td>what evidence was used to predict the existence of the Kuiper Belt?</td>
<td>2</td>
<td>collecting temperature data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>204</td>
<td>use the data to answer the questions</td>
<td>2</td>
<td>measure temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219</td>
<td>apparent brightness vs. distance graph</td>
<td>22</td>
<td>constructing a graph of time vs. temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>use the diagram to answer the questions (#2)</td>
<td>22</td>
<td>collecting temperature and time data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>arrange the items in the table (#3)</td>
<td>26</td>
<td>collecting qualitative data of light intensity at scale distance from the sun</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>use the diagram to answer the questions (#4)</td>
<td>3</td>
<td>construct a graphical model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>226</td>
<td>analysis with a spectrometer (#4)</td>
<td>33</td>
<td>determining relationship between temperature of the atmosphere and relative humidity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>collecting wet and dry bulb temperature readings</td>
<td>34</td>
<td>interpreting Doppler radar images</td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>investigation pg</th>
</tr>
</thead>
</table>

<p>| 43 | organize water quality data into a table |
| 44 | observing daphnia and recording movements and behavior |
| 44 | making detailed observations |
| 46 | collecting pH readings while adding carbon dioxide |
| 47 | constructing a graph of drops of acid vs pH |
| 5 | collecting time and temperature data |
| 5 | construct a temperature vs. time graph |
| 61 | finding a pattern of volcanoes on a bathymetric map |
| 67 | recording observations of crystal growing |
| 73 | using your sundial to collect accurate data |
| 75 | recording the changes in the moon over a month |
| 77 | calibrating your telescope |
| 9 | collecting and recording time and temperature data |</p>
<table>
<thead>
<tr>
<th>Standard #: Standard Strand</th>
<th>Cumulative Progress</th>
<th>student text detail pg</th>
<th>investigation detail pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.1.C1 by end of grade 8</td>
<td>Scientific Processes Safety</td>
<td>Know when and how to use appropriate safety equipment with all classroom materials.</td>
<td>4 safety caution on heating jar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 08.5.1.C2 by end of grade 8 | Scientific Processes Safety | Understand and practice safety procedures for conducting science investigations. | 4 safety caution on heating jar | 18 safety in greenhouse gas investigation |
| | | | | 2 thermometer safety |
| | | | | 26 safety using light bulbs |
| | | | | 32 safety in swinging thermometers |
| | | | | 4 heat safety |
| | | | | 42 safety tip for water testing |
| | | | | 44 safety tips for observing Daphnia |
| | | | | 8 heat safety |
| | | | | 80 safety in lab |
| | | | | vi safety in the laboratory |</p>
<table>
<thead>
<tr>
<th>Standard #:</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.2.A1</td>
<td>Science and Society</td>
<td>Cultural Contributions</td>
<td>Recognize that scientific theories: develop over time, depend on the contributions of many people, and reflect the social and political climate of their time.</td>
<td>157</td>
<td>history of calendars</td>
<td>14</td>
<td>contributions of Schönbein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>counting the days in a year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>the history of clocks and the division of time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>ancient beliefs about solar eclipses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>history of the telescope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.2.A2</td>
<td>Science and Society</td>
<td>Cultural Contributions</td>
<td>Know that scientists are men and women of many cultures who often work together to solve scientific and technological problems.</td>
<td>7</td>
<td>contributions of Joule</td>
<td>9</td>
<td>Joseph Black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Joseph Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.2.A3</td>
<td>Science and Society</td>
<td>Cultural Contributions</td>
<td>Describe how different people in different cultures have made and continue to make contributions to science and technology.</td>
<td>7</td>
<td>contributions of Joule</td>
<td>9</td>
<td>Joseph Black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Joseph Black</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #:</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.2.B1</td>
<td>by end of grade 8</td>
<td>Science and Society</td>
<td>Historical Perspectives</td>
<td>Describe the impact of major events and people in the history of science and technology, in conjunction with other world events.</td>
<td>157</td>
<td>history of calendars</td>
<td>14 contributions of Schönbein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>counting the days in a year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>the history of clocks and the division of time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>ancient beliefs about solar eclipses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>history of the telescope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.2.B2</td>
<td>by end of grade 8</td>
<td>Science and Society</td>
<td>Historical Perspectives</td>
<td>Describe the development and exponential growth of scientific knowledge and technological innovations.</td>
<td>35</td>
<td>hydrogen powered cars</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td>the clean water act</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>catalytic converters and scrubbing reduce acid rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td>using echo sounders to map the sea floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td>what we can learn from seismographs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118</td>
<td>understanding earthquakes allows engineers to design safer buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>171</td>
<td>using satellite technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>173</td>
<td>space shuttle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #: Grade level</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>08.5.3.A1 by end of grade 8</td>
<td>Mathematical Applications</td>
<td>Numerical Operations</td>
<td>Express quantities using appropriate number formats, such as decimals, percents and scientific notation.</td>
<td>164</td>
<td>astronomic numbers expressed in scientific notation</td>
<td>95</td>
<td>calculating solar brightness units (SBU) from kilometers in scientific notation</td>
</tr>
<tr>
<td>08.5.3.B1 by end of grade 8</td>
<td>Mathematical Applications</td>
<td>Geometry and Measurement</td>
<td>Perform mathematical computations using labeled quantities and express answers in correctly derived units.</td>
<td>166</td>
<td>calculating light year using scientific notation</td>
<td>82</td>
<td>determining scale distances</td>
</tr>
<tr>
<td>08.5.3.C1 by end of grade 8</td>
<td>Mathematical Applications</td>
<td>Patterns and Algebra</td>
<td>Express physical relationships in terms of mathematical equations derived from collected data.</td>
<td>11</td>
<td>heat equation</td>
<td>3</td>
<td>find equation for trend line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219</td>
<td>inverse square law</td>
<td>81</td>
</tr>
<tr>
<td>Standard #: Standard Strand</td>
<td>Cumulative Progress</td>
<td>Student text pg</td>
<td>Investigation pg</td>
<td>Investigation detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.3.D1 by end of grade 8 Mathematical Applications Data Analysis and Probability</td>
<td>Represent and describe mathematical relationships among variables using graphs and tables.</td>
<td></td>
<td>13</td>
<td>constructing a graph from atmospheric pressure data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>graphing water and ice temperature readings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>constructing a graph of time vs. temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>construct a graphical model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>organize water quality data into a table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>constructing a graph of drops of acid vs pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>construct a temperature vs. time graph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.3.D2 by end of grade 8 Mathematical Applications Data Analysis and Probability</td>
<td>Analyze experimental data sets using measures of central tendency mean, mode, and median.</td>
<td>121</td>
<td>192</td>
<td>average density (#5) average distance from the sun</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.3.D3 by end of grade 8 Mathematical Applications Data Analysis and Probability</td>
<td>Construct and use a graph of experimental data to draw a line of best fit and identify a linear relationship between variables when appropriate.</td>
<td></td>
<td></td>
<td>graphing and drawing a trend line for atmospheric pressure data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>draw a line of best fit through temperature data points</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.3.D4 by end of grade 8</td>
<td>Mathematical Applications</td>
<td>Data Analysis and Probability</td>
<td>Use computer spreadsheets, graphing and database applications to assist in quantitative analysis of data.</td>
<td>featured throughout CPO Science program</td>
<td></td>
<td>data tables and graphs can be created using computer spreadsheets</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.4.A1 by end of grade 8</td>
<td>Nature and Process of Technology</td>
<td>Science and Technology</td>
<td>Compare and contrast science with technology, illustrating similarities and differences between these two human endeavors.</td>
<td>104 using echo sounders to map the sea floor 171 using satellite technology 173 space shuttle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #:</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>08.5.4.B1</td>
<td>Nature and Process of Technology</td>
<td>Nature of technology</td>
<td>Analyze a product or system to determine the problem it was designed to solve, the design constraints, trade-offs and risks involved in using the product or system, how the product or system might fail, and how the product or system might be improved.</td>
<td></td>
<td></td>
<td>10</td>
<td>build your own atmospheric pressure gauge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>design and construct an aneroid barometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>design a scale model of a zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>design a scale model of a zoo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>simulate an earthquake</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>simulate an earthquake</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>design a metamorphism simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>design a metamorphism simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>design a sundial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>design a sundial</td>
</tr>
</tbody>
</table>

<p>| 08.5.4.C1 | Nature and Process of Technology | Technological Design | Recognize how feedback loops are used to control systems. | 12 | thermal equilibrium |
| | | | | 73 | the water cycle |
| | | | | 79 | pond ecosystem and water quality |
| | | | | 82 | acid rain formation system |</p>
<table>
<thead>
<tr>
<th>Standard #: Standard Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.7.B1 by end of grade 8</td>
<td>Physics Energy Transformations</td>
<td>Recognize that the sun is a major source of the Earth's energy and that solar energy includes visible, infrared and ultraviolet radiation.</td>
<td>31</td>
<td>ultraviolet and infrared light</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>distribution of incoming solar radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>Earth's "energy budget"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>Earth's internal energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>197</td>
<td>energy from the sun</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>harnessing the sun's energy</td>
<td></td>
</tr>
<tr>
<td>08.5.7.B2 by end of grade 8</td>
<td>Physics Energy Transformations</td>
<td>Describe the nature of various forms of energy, including heat, light, sound, chemical, mechanical, and electrical and trace energy transformations from one form to another.</td>
<td>197</td>
<td>energy from the sun</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>harnessing the sun's energy</td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.7.B3 by end of grade 8</td>
<td>Physics</td>
<td>Energy Transformations</td>
<td>Describe how heat can be conducted through materials or transferred across space by radiation and know that if the material is a fluid, convection currents may aid the transfer of heat.</td>
<td>14</td>
<td>densely packed solids are good conductors of heat</td>
<td>14</td>
<td>heat transfer through air</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>warming hands over candle</td>
<td>15</td>
<td>convection currents and weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>convection currents in water</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>transfer of heat by radiation</td>
<td>17</td>
<td>solid road surface emits radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>global warming and heat transfer by radiation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>apply knowledge of heat transfer to different situations</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>investigate convection in liquids</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Standard Strand</th>
<th>Cumulative Progress</th>
<th>Student Text pg</th>
<th>Detail</th>
<th>Investigation pg</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.8.A1</td>
<td>Earth Science</td>
<td>Earth's Properties and Materials</td>
<td>Observe that most rocks and soils are made of several substances or minerals.</td>
<td>107 activity of Earth’s crust at plate boundaries</td>
<td>61 examining the magma chemistry of volcanoes and how it relates to a volcano's location</td>
<td>66 understanding how igneous rocks are formed and growing crystals to investigate their formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>108 balance of creating and consuming Earth’s crust</td>
<td>128 properties of volcanically formed rock</td>
<td>68 understanding how sedimentary rocks are formed and creating sedimentary deposits to investigate them</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>133 types of volcanic rock</td>
<td>135 describing volcanic rock</td>
<td>70 understanding and investigating how metamorphic rocks are formed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136 constructive and destructive processes</td>
<td>136 constructive and destructive processes</td>
<td>71 interpreting how different rock formations were formed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>139 formation of soil</td>
<td>144 properties of minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>145 common minerals</td>
<td>146 Mohs hardness scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>147 formation of igneous and sedimentary and metamorphic rocks</td>
<td>149 identifying igneous and sedimentary and metamorphic rocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 the rock cycle</td>
<td>150 the rock cycle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.8.A2 by end of grade 8</td>
<td>Earth Science</td>
<td>Earth's Properties and Materials</td>
<td>Observe that the properties of soil vary from place to place and will affect the soil's ability to support life.</td>
<td>107</td>
<td>activity of Earth’s crust at plate boundaries</td>
<td>64</td>
<td>estimating the effects of meteor impacts on Earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>balance of creating and consuming Earth’s crust</td>
<td>65</td>
<td>identifying which geologic features on Earth were caused by meteors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129</td>
<td>formation of Hawaiian Islands due to volcanic activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td>volcanoes shape the Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>136</td>
<td>constructive and destructive processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>136</td>
<td>constructive and destructive processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137</td>
<td>constructive process of mountain building</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138</td>
<td>the destructive process of erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>139</td>
<td>wind erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>139</td>
<td>formation of soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>the rock cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>the rock cycle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.8.A3 by end of grade 8</td>
<td>Earth Science</td>
<td>Earth's Properties and Materials</td>
<td>Recognize that fossils provide evidence about the plants and animals that lived long ago and nature of the environment at the time.</td>
<td>95</td>
<td>origin of fossils</td>
<td>49</td>
<td>determining the relative ages of rock formations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>relative dating</td>
<td>50</td>
<td>sequencing events in a geologic cross-section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>faunal succession</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>interpreting rock formations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>143</td>
<td>studying moon rocks on Earth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.8.B1 by end of grade 8</td>
<td>Earth Science</td>
<td>Atmosphere and Water</td>
<td>Describe conditions in the atmosphere that lead to weather systems and how these systems are represented on weather maps.</td>
<td>32</td>
<td>transfer of energy in and out of Earth’s atmosphere</td>
<td>29</td>
<td>exploring how temperature-dependent layering creates currents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>convection currents in the atmosphere</td>
<td>33</td>
<td>finding relative humidity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>the Coriolis effect</td>
<td>35</td>
<td>use radar to detect a tornado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>global wind patterns</td>
<td>36</td>
<td>using radar to track a hurricane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>factors which influence the weather</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>water in the atmosphere affects weather patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>phase changes in the atmosphere and dewpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td>cloud formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>forms of precipitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>cold fronts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>effects of moving air masses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>jet streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>warm fronts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>rotation of air masses due to Coriolis effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>description of thunderstorms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>description of hurricanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>description of tornadoes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.8.C1 by end of grade 8</td>
<td>Earth Science</td>
<td>Processes that Shape the Earth</td>
<td>Explain how Earth's landforms and materials are created through constructive and destructive processes.</td>
<td>102 predicting what Earth might look like in 50 million years</td>
<td>102 definition of plate tectonics</td>
<td>52 listing which kind of plate boundary is associated with each geologic feature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>104 sea-floor spreading and mid-ocean ridges</td>
<td>53 identifying tectonic plates and plate boundaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td>105 magnetic patterns on the sea floor</td>
<td>54 predicting plate movement over 50 million years and the resultant land features</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td>106 theory of plate tectonics</td>
<td>60 understanding the Volcanic Explosivity Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106</td>
<td>107 describing plate boundaries</td>
<td>61 examining the magma chemistry of volcanoes and how it relates to a volcano's location</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td>107 activity of Earth’s crust at plate boundaries</td>
<td>61 finding a pattern of volcanoes related to the locations of plate boundaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td>108 divergent plate boundaries</td>
<td>64 estimating the effects of meteor impacts on Earth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>108 land features resulting from divergent plate boundaries</td>
<td>65 identifying which geologic features on Earth were caused by meteors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>108 balance of creating and consuming Earth’s crust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 111: earthquakes and plate tectonics
- 121: predict separation of North America and Europe in 75 million years
- 122: predict effects of divergent plate boundaries on Great Rift Valley
- 126: formation of magma in Earth's mantle
- 126: geologic basis for volcanic eruptions
- 127: where volcanic activity occurs
- 128: properties of volcanically formed rock
- 128: types and shapes of volcanoes
- 129: formation of Hawaiian Islands due to volcanic activity
- 129: geologic basis for shield volcanoes
- 129: formation of shield volcanoes due to hot spots
- 129: shield volcanoes
- 130: stratovolcanoes
<table>
<thead>
<tr>
<th>Standard #:</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td>formation of stratovolcanoes due to subduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td>geologic basis for stratovolcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td>geologic bases for cinder cone volcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td>volcanoes shape the Earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td>types of volcanic rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td>describing volcanic rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td>constructive and destructive processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td>constructive and destructive processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td>mountain-building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td>constructive process of mountain building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td>changes in land features due to erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td>the destructive process of erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td>landforms shaped by water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td>formation of soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td>wind erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td>effect of glaciers on land</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td>the rock cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Standard Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.8.C2 Earth Science</td>
<td>Processes that Shape the Earth</td>
<td>Show how successive layers of sedimentary rock and the fossils contained in them can be used to confirm the age, history, changing life forms, and geology of Earth.</td>
<td>96 relative dating</td>
<td>49 determining the relative ages of rock formations</td>
<td></td>
</tr>
<tr>
<td>by end of grade 8</td>
<td></td>
<td></td>
<td>97 faunal succession</td>
<td>50 sequencing events in a geologic cross-section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97 interpreting rock formations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>143 studying moon rocks on Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.8.D1 Earth Science</td>
<td>How We Study the Earth</td>
<td>Utilize data gathered from emerging technologies (i.e. geographic information systems (GIS) and global positioning systems (GPS) to create representations and describe processes of change on the Earth's surface.</td>
<td></td>
<td>13 constructing a graph from atmospheric pressure data</td>
<td></td>
</tr>
<tr>
<td>by end of grade 8</td>
<td></td>
<td></td>
<td></td>
<td>19 graphing water and ice temperature readings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22 constructing a graph of time vs. temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 construct a graphical model</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47 constructing a graph of drops of acid vs pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 construct a temperature vs. time graph</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61 plot locations of volcanoes using latitude and longitude</td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.8.D2</td>
<td>Earth Science</td>
<td>How We Study the Earth</td>
<td>Explain how technology designed to investigate features of the Earth's surface impacts how scientists study the Earth.</td>
<td>3</td>
<td>thermometers</td>
<td>10</td>
<td>construct and use an aneroid barometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>thermometers</td>
<td>2</td>
<td>accurately measuring temperature using thermometers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>measuring atmospheric pressure with barometers</td>
<td>34</td>
<td>using Doppler radar images to detect and track storms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>scientists detect loss of ozone in atmosphere</td>
<td>37</td>
<td>computer modeling to predict greenhouse effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>effects of global warming discovered</td>
<td>48</td>
<td>tracking ocean currents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>computer modeling to predict greenhouse effects</td>
<td>49</td>
<td>sling psychrometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>trees and global climate</td>
<td>87</td>
<td>impact of carbon dioxide on life in the oceans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
<td>causes and descriptions of earthquakes</td>
<td>113</td>
<td>earthquakes rating scales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>142</td>
<td>urban sprawl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.9.A1 by end of grade 8</td>
<td>Astronomy and Space Science</td>
<td>Earth, Moon, Sun System</td>
<td>Investigate the Earth, moon, and sun as a system and explain how the motion of these bodies results in the phases of the moon and eclipses.</td>
<td>43</td>
<td>the effects of Earth’s rotation on daytime heating and nighttime cooling</td>
<td>24</td>
<td>developing a hypothesis about why the seasons occur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>Earth’s tilt causes seasons</td>
<td>26</td>
<td>investigating how the distance of Earth from the sun affects its intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>158</td>
<td>the lunar cycle</td>
<td>27</td>
<td>investigating how Earth’s tilt affects the sun’s intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>Earth’s rotation and patterns of day and night</td>
<td>62</td>
<td>why studying the moon’s surface is useful for understanding Earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161</td>
<td>axial tilt causes the seasons</td>
<td>72</td>
<td>building a sundial to keep track of daily time based on the cycles between Earth and the sun</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td>solar eclipses</td>
<td>74</td>
<td>modeling the lunar cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td>lunar eclipses</td>
<td>75</td>
<td>constructing a lunar calendar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>solar eclipses</td>
<td>80</td>
<td>simulate an object in orbit and investigate how orbital period varies within distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>solar eclipses</td>
<td>82</td>
<td>setting up a scale model of the solar system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175</td>
<td>identify seasons</td>
<td>83</td>
<td>determining scale distances for the planets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>181</td>
<td>properties of the moon</td>
<td>84</td>
<td>determining scale sizes of the planets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>182</td>
<td>the moon as a satellite of Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183</td>
<td>the moon’s effect on tides on Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>184</td>
<td>the Earth-moon system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>185</td>
<td>giant impact theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>186</td>
<td>orbits of planets around the sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>187</td>
<td>explanation and illustration of the solar system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #: Grade level</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>08.5.9.A2 by end of grade 8</td>
<td>Astronomy and Space Science</td>
<td>Earth, Moon, Sun System</td>
<td>Explain how the regular and predictable motions of the Earth and moon produce tides.</td>
<td>158 the lunar cycle</td>
<td>62 why studying the moon’s surface is useful for understanding Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162 lunar eclipses</td>
<td>74 modeling the lunar cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163 solar eclipses</td>
<td>75 constructing a lunar calendar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>181 properties of the moon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>182 the moon as a satellite of Earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183 the moon’s effect on tides on Earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>184 the Earth-moon system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>185 giant impact theory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.9.A3</td>
<td>Astronomy and Space Science</td>
<td>Earth, Moon, Sun System</td>
<td>Explain how the tilt, rotation, and orbital pattern of the Earth relative to the sun produce seasons and weather patterns.</td>
<td>43</td>
<td>the effects of Earth’s rotation on daytime heating and nighttime cooling</td>
<td>24</td>
<td>developing a hypothesis about why the seasons occur</td>
</tr>
<tr>
<td>by end of grade 8</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>Earth’s tilt causes seasons</td>
<td>26</td>
<td>investigating how the distance of Earth from the sun affects its intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>Earth’s rotation and patterns of day and night</td>
<td>27</td>
<td>investigating how Earth’s tilt affects the sun’s intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161</td>
<td>axial tilt causes the seasons</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td>solar eclipses</td>
<td>72</td>
<td>building a sundial to keep track of daily time based on the cycles between Earth and the sun</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>solar eclipses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175</td>
<td>identify seasons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.9.B1</td>
<td>Astronomy and Space Science</td>
<td>Solar System</td>
<td>Describe the physical characteristics of the planets and other objects within the solar system and compare Earth to the rest of the planets.</td>
<td>24</td>
<td>comparison of Earth’s atmosphere to other planets</td>
<td>80</td>
<td>simulate an object in orbit and investigate how orbital period varies within distance</td>
</tr>
<tr>
<td>by end of grade 8</td>
<td></td>
<td></td>
<td></td>
<td>186</td>
<td>orbits of planets around the sun</td>
<td>82</td>
<td>setting up a scale model of the solar system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>187</td>
<td>explanation and illustration of the solar system</td>
<td>83</td>
<td>determining scale distances for the planets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>188</td>
<td>relative sizes and distances within the solar system</td>
<td>84</td>
<td>determining scale sizes of the planets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>189</td>
<td>what makes Earth capable of supporting life</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>193</td>
<td>asteroids and comets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>194</td>
<td>meteors and meteorites and the Kuiper Belt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.5.9.C1</td>
<td>Astronomy and Space Science</td>
<td>Stars</td>
<td>196</td>
<td>descriptions of the sun and comparisons to other stars</td>
<td>79</td>
<td>observe and describe the appearance of the moon and Jupiter and its moons</td>
</tr>
<tr>
<td>by end of grade 8</td>
<td></td>
<td>Understand that the sun is a star and that it shares characteristics with other stars.</td>
<td>209</td>
<td>size of the sun compare to other stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>211</td>
<td>H-R diagrams comparing temperature and brightness of stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>212</td>
<td>the life cycle of stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>213</td>
<td>description and illustration of the life cycle of stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>214</td>
<td>elements formed by nuclear fusion in stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.5.9.D1</td>
<td>Astronomy and Space Science</td>
<td>Galaxies and Universe</td>
<td>165</td>
<td>characteristics of the universe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>by end of grade 8</td>
<td></td>
<td>Know that the universe consists of many billions of galaxies, each including billions of stars.</td>
<td>207</td>
<td>what is a star?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>216</td>
<td>what is a galaxy?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>217</td>
<td>the structure of the Milky Way Galaxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>226</td>
<td>research and describe astronomical objects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.1.A1</td>
<td>Scientific Processes</td>
<td>Habits of Mind</td>
<td>When making decisions, evaluate conclusions, weigh evidence, and recognize that arguments may not have equal merit.</td>
<td>92</td>
<td>study claims made by bottled water companies</td>
<td>43</td>
<td>study water filtration device claims</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td>relative dating and modern geology based on Steno’s theories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td>Kelvin’s calculations of Earth’s age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>theory of plate tectonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103</td>
<td>critiquing Wegener’s theories of continental drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137</td>
<td>Darwin’s theories of the Andes formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td>what causes ice ages</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>185</td>
<td>theories of origin of the moon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>186</td>
<td>early theories of the solar system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>221</td>
<td>Big Bang theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #:</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>12.5.1.A2</td>
<td>Scientific Processes</td>
<td>Habits of Mind</td>
<td>Assess the risks and benefits associated with alternative solutions.</td>
<td>76</td>
<td>water cycle and conservation</td>
<td>17</td>
<td>research the causes of ozone in the lower atmosphere</td>
</tr>
<tr>
<td>by end of grade 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td>wise use of water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td>water usage and quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>effect of excess nitrates on environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>acid rain explained</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>research economic impact of producing gases that cause acid rain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>research the issue of acid rain</td>
<td></td>
</tr>
<tr>
<td>12.5.1.A3</td>
<td>Scientific Processes</td>
<td>Habits of Mind</td>
<td>Engage in collaboration, peer review, and accurate reporting of findings.</td>
<td></td>
<td></td>
<td>41</td>
<td>create water quality report</td>
</tr>
<tr>
<td>by end of grade 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>write paragraph to explain results</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>write summary of findings</td>
<td></td>
</tr>
<tr>
<td>12.5.1.A4</td>
<td>Scientific Processes</td>
<td>Habits of Mind</td>
<td>Explore cases that demonstrate the interdisciplinary nature of the scientific enterprise.</td>
<td>122</td>
<td>describe the work of a geologist and paleontologist and seismologist</td>
<td>40</td>
<td>water quality testing</td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #:</th>
<th>Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.1.B1</td>
<td>by end of grade 12</td>
<td>Scientific Processes</td>
<td>Inquiry and Problem Solving</td>
<td>Select and use appropriate instrumentation to design and conduct investigations.</td>
<td></td>
<td></td>
<td>10</td>
<td>design and construct an aneroid barometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>measure temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>measuring the intensity of light using an electric meter and solar cell and light bulb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>identifying the parts of a refracting telescope and making observations of the moon's surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5.1.B2</td>
<td>by end of grade 12</td>
<td>Scientific Processes</td>
<td>Inquiry and Problem Solving</td>
<td>Show that experimental results can lead to new questions and further investigations.</td>
<td></td>
<td></td>
<td>13</td>
<td>evaluating your aneroid barometer design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>predicting areas with high ozone concentration based on your data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>predicting what would happen if you place your ice/water test tube into a hot cup or a cold cup</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>specifying how the daphnia experiment could be improved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>estimating the number of meteor collisions on Earth during the last 3.5 billion years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>predicting the results of the crystal-growing experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #:</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>12.5.1.C1</td>
<td>Scientific Processes</td>
<td>Safety</td>
<td>Understand, evaluate and practice safe procedures for conducting science investigations.</td>
<td>4</td>
<td>featured throughout CPO Science program safety caution on heating jar</td>
<td></td>
<td>data tables and graphs can be created using computer spreadsheets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>safety in greenhouse gas investigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>thermometer safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>safety using light bulbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>safety in swinging thermometers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>heat safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>safety tip for water testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>safety tips for observing Daphnia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>heat safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>safety in lab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vi</td>
<td>safety in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Standard #: Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text</td>
<td>detail</td>
<td>investigation</td>
<td>detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>---------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5.2.A1</td>
<td>Science and Society</td>
<td>Recognize the role of the scientific community in responding to changing social and political conditions and how scientific and technological achievement affect historical events.</td>
<td>31</td>
<td>London Agreement of 1991</td>
<td>14</td>
<td>contributions of Schönbein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cultural Contributions</td>
<td></td>
<td>35</td>
<td>hydrogen powered cars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>should governments enforce changes for lowering greenhouse gas levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>governments managing water resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td>the clean water act</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>catalytic converters and scrubbing reduce acid rain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>is acid rain a problem in your community?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>what is the history of your community's water supply and treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>how is the government addressing the problem of acid rain?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td>what we can learn from seismographs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>118</td>
<td>understanding earthquakes allows engineers to design safer buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>157</td>
<td>history of calendars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>counting the days in a year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard Strand</th>
<th>Standard</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2.B1 by end of grade 12</td>
<td>Science and Society</td>
<td>Historical Perspectives</td>
<td>Examine the lives and contributions of important scientists who effected major breakthroughs in our understanding of the natural and designed world.</td>
<td>160</td>
<td>the history of clocks and the division of time</td>
<td>163</td>
<td>ancient beliefs about solar eclipses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>history of the telescope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>contributions of Joule</td>
<td>7</td>
<td>Joseph Black</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Joseph Black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5.2.B2 by end of grade 12</td>
<td>Science and Society</td>
<td>Historical Perspectives</td>
<td>Discuss significant technological achievements in which science has played an important part as well as technological advances that have contributed directly to the advancement of scientific knowledge.</td>
<td>104</td>
<td>using echo sounders to map the sea floor</td>
<td>171</td>
<td>using satellite technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>space shuttle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>173</td>
<td>space shuttle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2.B3 by end of grade 12</td>
<td>Science and Society</td>
<td>Historical Perspectives</td>
<td>20</td>
<td>research the history of heat and temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>research local water supply history</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard #: Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.3.B1 by end of grade 12</td>
<td>Mathematical Applications</td>
<td>Geometry and Measurement</td>
<td>2</td>
<td>collecting temperature data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>making detailed observations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>collecting pH readings while adding carbon dioxide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>collecting time and temperature data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>using your sundial to collect accurate data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td>calibrating your telescope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>collecting and recording time and temperature data</td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.3.C1</td>
<td>Mathematical Applications</td>
<td>Patterns and Algebra</td>
<td>Apply mathematical models that describe physical phenomena to predict real world events.</td>
<td>11 heat equation</td>
<td>219 inverse square law</td>
<td>13 constructing a graph from atmospheric pressure data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 predicting areas with high ozone concentration based on your data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19 graphing water and ice temperature readings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 predicting what would happen if you place your ice/water test tube into a hot cup or a cold cup</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22 constructing a graph of time vs. temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 find equation for trend line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 construct a graphical model</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47 constructing a graph of drops of acid vs pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 construct a temperature vs. time graph</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55 evaluating your completed bathymetric map</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63 estimating the number of meteor collisions on Earth during the last 3.5 billion years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66 predicting the results of the crystal-growing experiment</td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.3.D1</td>
<td>Mathematical Applications</td>
<td>Data Analysis and Probability</td>
<td>Construct and interpret graphs of data to represent inverse and non-linear relationships, and statistical distributions.</td>
<td></td>
<td></td>
<td>71</td>
<td>evaluate your ability to interpret rock formations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>inverse square law</td>
</tr>
</tbody>
</table>

- 13 graphing and drawing a trend line for atmospheric pressure data
- 13 constructing a graph from atmospheric pressure data
- 19 graphing water and ice temperature readings
- 22 constructing a graph of time vs. temperature
- 3 find slope of a trend line
- 3 draw a line of best fit through temperature data points
- 3 construct a graphical model
- 47 constructing a graph of drops of acid vs pH
- 5 calculate slope of a graph
- 5 construct a temperature vs. time graph
<table>
<thead>
<tr>
<th>Standard #:</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.4.A1</td>
<td>Nature and Process of Technology</td>
<td>Science and Technology</td>
<td>Know that scientific inquiry is driven by the desire to understand the natural world and seeks to answer questions that may or may not directly influence humans, while technology is driven by the need to meet human needs and solve human problems.</td>
<td>15</td>
<td>convection and sea breezes</td>
<td>13</td>
<td>evaluating the relationship between atmospheric pressure and weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>why do ears pop</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>hydrogen powered cars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>patterns of heating and cooling on Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>meteorologists use atmospheric pressure data to understand movement of weather systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>patterns in storm activity across the globe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td>the clean water act</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>catalytic converters and scrubbing reduce acid rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td>using echo sounders to map the sea floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td>patterns of earthquakes and volcanoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td>what we can learn from seismographs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
<td>boundaries of tectonic plates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118</td>
<td>understanding earthquakes allows engineers to design safer buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127</td>
<td>the Ring of Fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade level</td>
<td>by end of grade 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>the food paradox of the oceans</td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature and Process of Technology</td>
<td>Nature of Technology</td>
<td>Assess the impacts of introducing a new technology in terms of alternative solutions, costs, tradeoffs, risks, benefits and environmental impact.</td>
<td>158</td>
<td>lunar cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5.4.B1 by end of grade 12</td>
<td></td>
<td></td>
<td></td>
<td>171</td>
<td>using satellite technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>173</td>
<td>space shuttle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183</td>
<td>tides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>211</td>
<td>categorizing stars with H-R diagrams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>222</td>
<td>evidence for Big Bang theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>water cycle and conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td>wise use of water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td>water usage and quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>effect of excess nitrates on environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>acid rain explained</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>research economic impact of producing gases that cause acid rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>research the issue of acid rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>research the causes of ozone in the lower atmosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>wise use of water supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>maintaining water supply quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>save water for houseplants</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>perform water quality tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>investigate effect of acid rain on microorganisms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Standard Strand Cumulative Progress</th>
<th>student text pg</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.4.C1 by end of grade 12</td>
<td>Nature and Process of Technology Technological Design</td>
<td>Plan, develop, and implement a proposal to solve an authentic technological problem.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>

12.5.8.A1 by end of grade 12	Earth Science Earth's Properties and Materials	Explain the interrelationship of the geosphere, hydrosphere, and the atmosphere.	23	description of Earth's atmosphere
			24	effect of life on Earth's atmosphere
			29	layers of the atmosphere
			30	layers of the atmosphere
			84	oceans as part of the hydrosphere
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.8.B1</td>
<td>Earth Science</td>
<td>Atmosphere and Water</td>
<td>Describe how weather (in the short term) and climate (in the long term) involve the transfer of energy in and out of the atmosphere.</td>
<td>32</td>
<td>transfer of energy in and out of Earth’s atmosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #:</td>
<td>Grade level</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>12.5.8.C1</td>
<td>by end of grade 12</td>
<td>Earth Science</td>
<td>Processes that Shape the Earth</td>
<td>Use the theory of plate tectonics to explain the relationship among earthquakes, volcanoes, mid-ocean ridges, and deep-sea trenches.</td>
<td>102</td>
<td>definition of plate tectonics</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>predicting what Earth might look like in 50 million years</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td>sea-floor spreading and mid-ocean ridges</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
<td>magnetic patterns on the sea floor</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106</td>
<td>theory of plate tectonics</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td>describing plate boundaries</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>land features resulting from divergent plate boundaries</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>divergent plate boundaries</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
<td>resulting land features from subduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
<td>convergent plate boundaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>land features resulting from transform plate boundaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>transform plate boundaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
<td>earthquakes and plate tectonics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
<td>causes and descriptions of earthquakes</td>
<td></td>
</tr>
<tr>
<td>Standard #:</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td>earthquakes rating scales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td>predict separation of North America and Europe in 75 million years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td>predict effects of divergent plate boundaries on Great Rift Valley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td>structure of a volcano</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td>formation of magma in Earth's mantle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td>geologic basis for volcanic eruptions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td>where volcanic activity occurs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td>properties of volcanically formed rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td>figure showing structure of different types of volcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td>types and shapes of volcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td>shield volcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td>formation of shield volcanoes due to hot spots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td>geologic basis for shield volcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>Student text</th>
<th>detail</th>
<th>Investigation</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pg</td>
<td></td>
<td>pg</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td>formation of Hawaiian Islands due to volcanic activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td>formation of stratovolcanoes due to subduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td>stratovolcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td>geologic basis for stratovolcanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td>geologic bases for cinder cone volcanoes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td>volcanoes shape the Earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td>types of volanic rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td>describing volcanic rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td>constructive process of mountain building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td>mountain-building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td>changes in land features due to erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td>the destructive process of erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td>wind erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td>effect of glaciers on land</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #: Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5.8.C2 by end of grade 12</td>
<td>Earth Science</td>
<td>Processes that Shape the Earth</td>
<td>Know that Earth is a system in which chemical elements exist in fixed amounts and move through the solid Earth, oceans, atmosphere, and living things as part of geochemical cycles.</td>
<td>23</td>
<td>nitrogen cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>effects of acid rain on natural environments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>oceans in the water cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>sources of salts in the ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>composition of seawater</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td>activity of Earth’s crust at plate boundaries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>balance of creating and consuming Earth’s crust</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>133</td>
<td>volcanoes and water vapor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136</td>
<td>constructive and destructive processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>138</td>
<td>landforms shaped by water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>the rock cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>investigate how the ocean’s salinity affects its density</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>actions to take to improve water quality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.8.C3</td>
<td>Earth Science</td>
<td>Processes that Shape the Earth</td>
<td>Recognize that the evolution of life on Earth has changed the composition of Earth's atmosphere through time.</td>
<td>31</td>
<td>effects of CFC's on the ozone layer</td>
</tr>
<tr>
<td>Grade level</td>
<td>by end of grade 12</td>
<td></td>
<td></td>
<td>33</td>
<td>greenhouse conditions on Earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>greenhouse effect and greenhouse gases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>global warming</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>changes to the oceans due to increasing global temperatures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>effects of burning fossil fuels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>global temperature changing over time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>research the density of Venus' and Mars' atmospheres</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>temperature inversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>permafrost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>acid rain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>causes and health effects of acid rain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>illustration of acid rain formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>impact of increased CO2 on oceans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>impact of increased CO2 in oceans</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>investigate the temperature effects of greenhouse gases</td>
</tr>
<tr>
<td>40</td>
<td>predict the quality of surface water to be tested and justify your answer</td>
</tr>
<tr>
<td>44</td>
<td>the effects of acid rain on organisms in aquatic environments</td>
</tr>
<tr>
<td>47</td>
<td>effect of ocean on carbon dioxide levels in the atmosphere</td>
</tr>
<tr>
<td>Standard #:</td>
<td>Standard Strand</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Grade level</td>
<td>Earth's surface is changing</td>
</tr>
<tr>
<td></td>
<td>how urban sprawl changes local climate</td>
</tr>
<tr>
<td></td>
<td>greenhouse conditions on Venus</td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.8.D1 by end of grade 12</td>
<td>Earth Science</td>
<td>How We Study the Earth</td>
<td>Analyze the evidence produced by a variety of techniques that is used to understand changes in the Earth that have occurred over time (topography, fossils, rock stratification, ice cores, and radiometric data).</td>
<td>96</td>
<td>relative dating</td>
<td>49</td>
<td>determining the relative ages of rock formations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>interpreting rock formations</td>
<td>50</td>
<td>sequencing events in a geologic cross-section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>faunal succession</td>
<td>52</td>
<td>reading a bathymetric map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>predicting what Earth might look like in 50 million years</td>
<td>53</td>
<td>using a geologic hazard map of frequent earthquakes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
<td>land features resulting from divergent plate boundaries</td>
<td>54</td>
<td>predicting plate movement over 50 million years and the resultant land features</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
<td>resulting land features from subduction</td>
<td>64</td>
<td>estimating the effects of meteor impacts on Earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>land features resulting from transform plate boundaries</td>
<td>65</td>
<td>identifying which geologic features on Earth were caused by meteors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
<td>where earthquakes occur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td>earthquake hazard map</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121</td>
<td>predict separation of North America and Europe in 75 million years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122</td>
<td>predict effects of divergent plate boundaries on Great Rift Valley</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129</td>
<td>formation of Hawaiian Islands due to volcanic activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td>volcanoes shape the Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #:</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text pg</td>
<td>detail</td>
<td>investigation pg</td>
<td>detail</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>constructive process of mountain building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mountain-building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>changes in land features due to erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the destructive process of erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wind erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>effect of glaciers on land</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>geologic hazard maps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>studying moon rocks on Earth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>using a geologic hazard map</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.9.A1 by end of grade 12</td>
<td>Astronomy and Space Science</td>
<td>Earth, Moon, Sun System</td>
<td>Explain how the motions of the Earth, sun and moon, define units of time including: days, month, and years.</td>
<td>43</td>
<td>the effects of Earth’s rotation on daytime heating and nighttime cooling</td>
<td>24</td>
<td>developing a hypothesis about why the seasons occur</td>
</tr>
<tr>
<td>158</td>
<td>Earth’s tilt causes seasons</td>
<td>26</td>
<td>investigating how the distance of Earth from the sun affects its intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Earth’s rotation and patterns of day and night</td>
<td>27</td>
<td>investigating how Earth’s tilt affects the sun’s intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>axial tilt causes the seasons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>lunar eclipses</td>
<td>62</td>
<td>why studying the moon’s surface is useful for understanding Earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>solar eclipses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>solar eclipses</td>
<td>72</td>
<td>building a sundial to keep track of daily time based on the cycles between Earth and the sun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>solar eclipses</td>
<td>74</td>
<td>modeling the lunar cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>identify seasons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>properties of the moon</td>
<td>75</td>
<td>constructing a lunar calendar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>the moon as a satellite of Earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>the moon’s effect on tides on Earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>the Earth-moon system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>giant impact theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #: Grade level</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.9.A2 by end of grade 12</td>
<td>Astronomy and Space Science</td>
<td>Earth, Moon, Sun System</td>
<td>Recognize that changes in the Earth's position relative to the sun produces differing amounts of daylight seasonally.</td>
<td>43</td>
<td>the effects of Earth’s rotation on daytime heating and nighttime cooling</td>
<td>24</td>
<td>developing a hypothesis about why the seasons occur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>Earth’s tilt causes seasons</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>Earth’s rotation and patterns of day and night</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161</td>
<td>axial tilt causes the seasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td>solar eclipses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>solar eclipses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175</td>
<td>identify seasons</td>
<td></td>
</tr>
<tr>
<td>12.5.9.B1 by end of grade 12</td>
<td>Astronomy and Space Science</td>
<td>Solar System</td>
<td>Explain that our solar system coalesced from a nebular cloud of gas and dust left from exploding stars.</td>
<td>215</td>
<td>how the solar system was formed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Correlation to New Jersey Core Curriculum Content Standards for Science
- **Introduction to Earth and Space Science**
- Student Text and Investigation Manual
Correlation to New Jersey Core Curriculum Content Standards for Science

Introduction to Earth and Space Science

Student Text and Investigation Manual

<table>
<thead>
<tr>
<th>Standard #:</th>
<th>Standard</th>
<th>Strand</th>
<th>Cumulative Progress</th>
<th>student text pg</th>
<th>detail</th>
<th>investigation pg</th>
<th>detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.9.C1</td>
<td>Astronomy and Space Science</td>
<td>Stars</td>
<td>Describe the physical characteristics, stages of development, and the apparent motions of stars.</td>
<td>212</td>
<td>the life cycle of stars</td>
<td>79</td>
<td>observe and describe the appearance of the moon and Jupiter and its moons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>213</td>
<td>death of small to medium stars results in white dwarfs and planetary nebula and black dwarfs</td>
<td>88</td>
<td>using spectroscopy to analyze the light emitted by stars and identify most common elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>213</td>
<td>description and illustration of the life cycle of stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>214</td>
<td>death of massive stars results in supernovas and neutron stars and black holes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>214</td>
<td>elements formed by nuclear fusion in stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5.9.D1</td>
<td>Astronomy and Space Science</td>
<td>Galaxies and Universe</td>
<td>Describe data gathering and observation technologies and explain how they are used to explore the solar system and beyond.</td>
<td>168</td>
<td>history of the telescope</td>
<td>88</td>
<td>understand why spectroscopy is an important tool of astronomers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>169</td>
<td>types and uses of telescopes</td>
<td>92</td>
<td>measuring apparent brightness to calculate the distance to stars and galaxies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>170</td>
<td>types and uses of telescopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>171</td>
<td>satellites as tools of astronomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172</td>
<td>spacecraft as tools of astronomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>208</td>
<td>the use of spectroscopy to analyze stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard #: Grade level</td>
<td>Standard</td>
<td>Strand</td>
<td>Cumulative Progress</td>
<td>student text</td>
<td>detail</td>
<td>investigation</td>
<td>detail</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>12.5.9.D2 by end of grade 12</td>
<td>Astronomy and Space Science</td>
<td>Galaxies and Universe</td>
<td>Cite evidence to describe the scientific theory of the origin of the universe and the current explanations of its evolution.</td>
<td>185</td>
<td>historical theories of the origin of the moon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>186</td>
<td>historical theories about the solar system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>195</td>
<td>historical theories of which objects were planets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>221</td>
<td>the Big Bang theory of the origin of the universe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>222</td>
<td>evidence for the Big Bang theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>223</td>
<td>evidence for the Big Bang theory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>